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Abstract
Within the framework of linear and non-linear Poisson–Boltzmann theory, we
study the effective interaction of a single charged colloidal sphere in an aqueous
electrolytic solution with an air–water interface. The effects of varying the
salt concentration and the colloidal surface charge density on the effective
interaction are being investigated, with a view to understanding some physical
phenomena, which include electrostatic adsorption and trapping at the air–water
interface. Results show an electrostatic double-layer barrier to the colloid’s
approach to the interface which can be lowered considerably by increasing the
salt concentration. For enough added salt, the charged colloid should be able
to suddenly pop up at the air–water surface, an effect which has actually been
observed in recent experiments. We discuss the relevance of our results to
other experimental observations, and emphasize the close analogy between the
problem considered here and the classical problem of the interaction of two
colloids in a bulk suspension.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charged colloidal particles can be trapped at the interface between two fluids. Experimental
studies of such two-dimensional (2D) colloidal systems are very instructive as they afford
the possibility of investigating in two dimensions such interesting problems as crystallization,
aggregation, and melting. Pieranski [1] was the first to report a direct microscopic observation
of 2D colloidal crystals trapped at the air–water interface, for polystyrene spheres. Kesava-
moorthy et al [2], also working with polystyrene spheres at the air–water interface, reported
the observation of a sudden collapse of the 2D crystal into a compact structure. The instability
of the crystalline phase was attributed to enhanced attractive interparticle interaction at the
interface. Stamou et al [3], offering a theoretical explanation, have proposed a mechanism
for attractive interaction between colloids trapped at an air–water interface, which is based
on non-uniform wetting causing an irregular shape of the particle meniscus. There are other
important works on 2D crystallization and melting [4] of charged colloids at the air–water
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interface, including that by Terao and Nakayama [5] who made computer simulations and
found two-stage melting of colloidal crystal and the existence of a hexatic phase at certain
conditions. There are a good number of papers dealing with aggregation and clustering of col-
loidal spheres at the air–water interface [6–10] with a view to understanding their structures,
growth, and dynamics. We also mention novel experimental studies [11] on 2D systems of
superparamagnetic colloids at the air–water interface which have shed new light on quite a
few rather fundamental properties of 2D systems.

The study of colloids at the air–water interface is useful also with respect to some
biologically oriented questions, revealing some aspects of the crystallization of proteins,
which in a first primitive approach can be regarded as charged colloids. Protein structure
determination by classical x-ray crystallography requires three-dimensional crystals that are
difficult to obtain for most proteins [12]. An alternative has been to grow 2D crystals by
adsorbing proteins at the air–water interface for synchrotron radiation diffraction analysis [13].
Adsorption of proteins generally at fluid–fluid interfaces and their behaviour in the adsorbed
state also play an important role in the formulation and stabilization of different foam-based
and emulsion-based products in the food and drug industries [14–16].

Most of the above-cited studies deal mainly with the various interparticle interactions
between particles located already at the interface, which lead to the observed structures
(crystals, aggregates, etc) and behaviour (e.g. denaturing of proteins). But very few reliable
studies have been reported on particle–interface interaction leading to adsorption and trapping.
The present study is focusing on just these particle–interface interactions, and here, in
particular, on the electrostatic effective interaction between charged colloidal particles with an
air–water interface.

Hurd [17], who investigated the effective pair interaction potential of trapped charged
colloids, has defined interfacial colloids as consisting of particles dispersed on an interface
between two fluid media and held there by surface tension. This definition follows perhaps
from the work of Pieranski [1], who calculated the surface energy (capillary) well in which a
charged polystyrene latex sphere can be trapped and showed that it dominates, by many orders
of magnitude, any thermal or gravitational fluctuations present. The influence of electrostatic
forces for a charged latex particle, however, was totally ignored in Pieranski’s analysis as
regards the trapping.

We will show in the present work that since the electrostatic contribution to keeping a
colloid at the interface is very small compared to the surface energy trap, this neglect is easily
justifiable if one is interested only in the behaviour of particles already trapped. Electrostatics is,
however—and this is essential in our context—the key to understanding the particle–interface
interaction, i.e., those quantities that govern the physical processes of colloidal particles which
are approaching the air–water interface, but which are not yet trapped. The question that
originally suggested this study was: if it is energetically advantageous for a charged colloid
to be at the air–water interface, what prevents all other colloids of the suspension popping up
to the surface?

The answer to this question is simple: any charged object approaching a neutral interface
between two media of different dielectric constants experiences repulsive image-charge forces
if it approaches it from the medium with the higher dielectric constant [18, 19]. This applies
also to the highly charged colloids in an aqueous electrolyte solution approaching an air–water
interface (dielectric constant ratio: 1:80). The existence of further charges, the microions of the
electrolyte solution, can change this picture only quantitatively, and not qualitatively [20,21].
They introduce screening, and thus just reduce the image-charge repulsion, leading to a salt-
dependent repulsive energy barrier which prevents the bulk colloids approaching the interface
from appearing at the interface. This electrostatic energy barrier is the focus of this work.
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We calculate its height and salt dependence within the framework of Poisson–Boltzmann (PB)
theory (linear and non-linear).

Simple as our explanation of a repulsive energy barrier might first appear, the situation in
the literature on this point is most confusing. This confusion can be traced back to the paper
of Stillinger [22] who calculated the electrostatic potential of a colloidal point charge at an
interface between an electrolyte and a neutral substrate of different dielectric constant. He then
considered the limiting case in which the point macroion is adsorbed directly on the substrate,
and calculated the work done in bringing the point charge from infinity (the bulk solution) to
this position. This work turned out to be negative, and Stillinger concluded that adsorption of
the ion at the substrate is energetically favoured. The result is correct, the conclusion however
not. Indeed, a point charge directly at the interface has a negative electrostatic (trapping)
energy, but on its way to this energetically favourable position it has to overcome an infinitely
large energy barrier which for a colloid of finite size reduces to the finite barrier that we have
just discussed; it therefore cannot adsorb. Earnshaw [23] must have misapplied Stillinger’s
potential in attempting to describe a mechanism of trapping from an electrostatic viewpoint,
pointing out that the electrostatic trap can compete with or even exceed the surface energy
trap for highly charged latex particles. Earnshaw’s result seems to suggest an electrostatic
double-layer force driving the macrosphere from the bulk of the electrolyte solution to the
interface. This result is incorrect: Stillinger’s potential, correctly applied [21], leads to the
same screened image-charge repulsion, already analysed not only in other recent studies [20],
but already in some of the earliest investigations on this field [24, 25].

2. Exposition of the problem

2.1. The effective interaction in non-linear Poisson–Boltzmann theory

We consider a charged spherical particle which could be colloidal or macromolecular in
dimension, in the vicinity of a planar boundary between an aqueous electrolytic solution
of dielectric constant ε and a bounding medium, specifically air, of dielectric constant ε′. For
air, ε′ = 1 is so low compared to that for water, ε = 80, that we can approximate the ratio
ε′/ε as zero. It can be shown [24, 25] that the relative error in calculated quantities (e.g. the
interaction potential) due to this approximation is of the order of 2/(ε + 1). We shall hereafter
refer to the boundary between air and the aqueous solution as the air–water interface or just
the interface. The electrolyte is assumed to be unbounded, i.e., there is a reservoir of salt
ions coupled to the system, so the number of ions is not fixed. The fixed thermodynamics
variables are: the temperature T , the chemical potential µs for a given monovalent salt-ion
concentration cs (βµs = log cs�

3, with β = kBT , kB being the Boltzmann constant and �3

the thermal wavelength), and the volume of the electrolyte region V . Our system is then in
the grand canonical ensemble with the grand potential, �, being the relevant thermodynamic
function.

The grand potential of the system is determined for a given particle–interface distance h

by using the solution of the mean-field PB equation for the electrostatic potential ψ . The PB
equation can be written as

∇2φ = κ2 sinh φ (1)

where φ = eβψ (e being the elementary charge) is the normalized potential. κ2 = 8πλBcs is
the screening parameter related to the salt-ion concentration and λB = e2β/ε is the Bjerrum
length. The colloidal particle of radius a is assumed to bear a fixed surface charge density, −eσ ;
when totally immersed in water (h � a) it bears Z (=4πa2σ) fixed negative homogeneously
distributed charges, while the confining air–water interface bears no surface charges.
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Figure 1. Our system: a colloidal sphere of uniform surface charge density −eσ and radius a inside
an electrolyte (water) of dielectric constant ε, and a distance h from an interface formed by air of
dielectric constant ε′. (a) The colloid is completely immersed in the electrolyte (h > a), (b) the
colloid just touches the interface (h = a), and (c) the colloid emerges at the interface (h < a).

There is the controversial claim that the air–water interface can be associated with
some electrostatic surface potential. This is supposedly due to the preferred orientation of
interfacial water molecules. It has been reported that as a result of this orientation, a thin
electrical double layer at the interface is established with the outermost portion (facing the
gas phase) of the double layer being negative and the innermost part (facing the liquid phase)
being positive [26–28]. Sengupta and Damodaran [14] calculated and gave the value of the
inner potential as about 184.7 mV which lies between previous experimentally measured
values (100–200) mV [28]. On the other hand, works involving air bubbles in water report
that the bubble–water surface potential (facing the liquid phase) is negative and of value
−25 ± 10 mV [29]. Ducker et al [30], lamenting the uncertainty in the exact magnitude of the
potential (air–water interface), assumed values from zero to −25 mV. Even if we assume an
air–water interface of oppositely charged layers, the electric flux through any surface enclosing
such layers is zero and hence it is more accurate to assume that the interface is neutralized and
bears no net surface charges, as we have in this work. It is also noteworthy that Wagner [24]
and Onsager and Samaras [25] also treated the air–water interface as being neutral.

We denote the boundary given by the Cartesian z = 0 interface by ∂Gw, the surface of the
particle by ∂Ga , the region of the electrolytic solution by G (with the volume of the colloid
excluded!), and the negative z < 0 half-space by G<; see figure 1.

The fixed charges on the colloidal sphere, in contrast to the mobile salt ions, enter the
problem through the boundary conditions in the PB boundary value problem (BVP). We employ
the constant-charge boundary condition requiring that at ∂Ga the normal component of the
electric field be proportional to the particle surface charge density σ . We also assume a
vanishing dielectric constant for both air and the particle so that ε′/ε ≈ 0 and so that the
potential vanishes at infinity. Since the dielectric constants of the particle and air are taken to
be zero, we do not have to solve for the potentials inside these regions. The BVP can then be
summarized as follows:

∇2φ = κ2 sinh φ r ∈ G

na · ∇φ = 4πλBσ r ∈ ∂Ga

nw · ∇φ = 0 r ∈ ∂Gw

φ = 0 r → ∞

(2)
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where na and nw are the outward unit normal vectors on the particle surface and the interface
respectively; see figure 1. The boundary conditions in equation (2) have been considerably
simplified by the assumption of vanishing dielectric constants for air and the colloid, and the
treatment of the air–water interface as uncharged. For example, at the boundary, ∂Gw, the
boundary condition should read εnw ·∇φ|z=0+ − ε′nw ·∇φ|z=0− = 4πελBσw, where σw = 0
is the charge density at the interface.

The BVP is solved for three stages of the particle position relative to the air–water interface
in different coordinate systems suitable for the geometry of the problem:

(a) Particle in solution and close to the interface (h > a): bispherical coordinates (figure 1(a)).
(b) Particle in solution but just touching the interface (h = a): tangent-sphere coordinates

(figure 1(b)).
(c) Particle partly in solution and partly in air (0 < h < a): toroidal coordinates (figure 1(c)).

The bispherical coordinate system has been used repeatedly for describing effective interaction
between two charged spheres in solution [31–33], and recently by us [21] for calculating
the interaction between a charged sphere and a charged/uncharged planar interface. A full
description can be found in the latter reference. The toroidal and tangent-sphere coordinates
procedures are new here and are detailed in the appendix. The advantage of choosing different
coordinate systems is mainly a technical one: in this way the complex shape boundaries of the
system are transformed, for all three situations in figure 1, into 2D rectangular form; this then
simplifies the numerical procedure for solving the BVP enormously.

Once φ is known, we proceed to calculate the grand potential, �h, of the system which
can be written in its final form [21]:

β�h = −σ

2

∫
∂Ga

dS φh + cs

∫
G

dV (φh sinh φh − 2 cosh φh + 2). (3)

The first term gives the electrostatic energy due to the fixed colloidal charges on ∂Ga , while
the second term incorporates the entropic and electrostatic contributions of the mobile ions in
G. The subscript h is intended to emphasize the parametric h-distance dependence of φ and
then �. Equation (3) can alternatively be written as

β�h = 1

8πλB

∫
G

dV [(∇φ)2 + 2κ2(φh sinh φh − (cosh φh − 1))], (4)

in the region G. The effective particle–interface interaction βV (h) can now be defined as the
total change in the grand potential when the particle is brought to a finite distance h (near the
interface) from infinity (in the electrolyte far from the interface):

V (h) = �h − �∞. (5)

�∞ is determined by solving the PB problem for an isolated particle in the bulk of the
electrolytic solution in the spherical coordinate system. It can also be obtained from solution in
bispherical coordinates by taking a sufficiently large particle–interface separation (h → ∞).

It is important to emphasize that equation (5) accounts only for the energy stored in the
double layer. As long as h � a, this is indeed equal to the total energy of interaction between
the colloid and the interface. However, when the colloidal particle breaks through the air–water
interface, i.e. if h < a, additional contributions to the interaction energy must be included.
The most important of these additional energy terms—we denote it by Es—is due to capillary
forces and is estimated further below. Other terms arise due to the fact that a part of the colloidal
surface is exposed to air when h < a. Estimating these terms requires knowledge of some
subtle details about the dewetted colloid surface. We can only speculate about the precise state
of charge of the dewetted surface. Two cases mark the extremes: the dewetted part remains
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fully charged; or it completely discharges by binding some ions either from the air or from
water. Let us first consider the former case. The charges on the dewetted parts of the colloidal
particles are then transferred from a region of high dielectric constant to one of low dielectric
constant. There is an energy penalty known as Born repulsion for transferring charges from
a high- to a low-dielectric-constant region [34]. The repulsion would in fact be high enough
to make it virtually impossible for any colloid to break through the interface. This, however,
would contradict all the experimental observations reporting stable 2D colloidal suspensions
trapped at the air–water interface [1, 2, 35].

The alternative, namely a discharging of the dewetted surface, costs energy as well. A
colloidal particle put in the bulk of an aqueous solution would become spontaneously charged:
its solvation energy Usol is negative. If pdewet (h) is the fraction of the colloidal surface that
is dewetted, then −Usolpdewet (h) could, in principle, be used to estimate the energy cost of
discharging the particle. Being however a quantity that depends heavily on the microscopic
details of the solvation process, Usol would vary from colloid to colloid. Since we here wish
to keep our considerations as general as possible, we assume in the following the case of
full discharging of the dewetted surface, but completely ignore the energy contribution due
to this discharging and concentrate instead on the only safe piece of information, that is, the
energy change that goes along with the changes of the double layer near the wetted surface
as the particle goes through the interface. We will find that this energy is at least an order of
magnitude smaller than the surface capillary energy Es . We finally note that full discharging
of the dewetted part of the colloid implies that ∂Ga for h < a in equations (2) and (3) refers
to only that part of the colloidal surface that is exposed to water.

2.2. The effective interaction in the limit of zero salt concentration

The PB-BVP, equation (2) and hence equation (3) can be solved numerically for various values
of κ . An exception is the case κ = 0 (no salt ions) when convergence problems occurred in
our numerical scheme. Though highly unphysical, the case κ = 0 is still not uninteresting to
us—not only as a limiting case, but also as an introduction to the following section.

The effective potential in the salt-free limit, V 0(h), consists only of the self-energy of the
particle’s fixed charges in their own Coulomb potential:

V 0(h) = �
self

h − �self
∞ (6)

with the self-energy

β�
self

h = − 1
2

∫
∂Ga

dS σ(r)φ0
h(r) (7)

where φ0
h is the potential due to the colloidal surface charges. When h → ∞, the potential

has perfect spherical symmetry and, for a colloid with a constant surface charge density
−σe = −Ze/4πa2, one obtains φ0(a) = −ZλB/a and thus

β�self
∞ = Z2λB

2a
, h → ∞. (8)

If the colloid is at a finite distance from the interface (h � a), the potential is no longer
spherically symmetric since there is a jump in the dielectric constants at z = 0, requiring that
∇φ = 0 at z = 0 when ε′/ε → 0. This boundary condition can conveniently be satisfied
using the method of image charges. If ε′/ε → 0 and if we approximate the colloid by a point
charge, the colloidal image charge is of the same sign and magnitude as the colloidal charge,
and located at z = −h. One then obtains

β�
self

h = Z2λB

4h
+ β�self

∞ . (9)
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The next stage is reached when the colloidal particle breaks through the air–water interface
(h < a). We assume that the total charge on the particle falls as the surface is dewetted.
Assuming uniform wetting or dewetting without meniscus, the now h-dependent total charge
Z can be expressed as

Zh = Z

2
(1 + h/a), |h| � a. (10)

Ignoring for the moment the constraint ∇φ = 0 at z = 0, the electrostatic potential of this
partially charged sphere reads

φ0
h(r, θ, ϕ) = −ZλB

4π

∫ π

θ ′
h

dθ ′ sinθ ′
∫ 2π

0

dϕ′
√

R
R = r2 + a2 − 2ar cos θ cos θ ′ − 2ra sin θ sin θ ′ cos ϕ′,

(11)

where θ ′
h is the contact angle of the colloid with the air–water interface. Interestingly, numerical

integration of equation (7) with (11) substituted shows that the self-energy (for h < a) can
reasonably be approximated as

β�
self

h = Z2
hλB

2

(
1

2h′ +
1

a

)
, (12)

where the total remaining charge Zh, equation (10), is now assumed to be located at the centre
of the wetted volume, h′ from the interface. Collecting all pieces, we thus arrive at the following
approximate effective potential:

βV 0(h) =




Z2λB

4h
h � a

Z2
hλB

2a

(
1 +

a

2h′ − Z2

Z2
h

)
|h| < a

(13)

which our numerically calculated potentials should approach in the limit κ → 0.

2.3. The effective interaction in linear Poisson–Boltzmann theory

The BVP, equation (2), can be solved only numerically due to the non-linearity of the
PB equation. Analytical results may however be possible on linearization with further
approximations, when the potential φ is everywhere less than one.

In [21], we have described how to obtain the effective particle–interface interaction from
Stillinger’s [22] potential derived for a point charge in an electrolytic solution (ε) near a
neutral dielectric substrate (ε′) using the linearized PB equation (∇2φ = κ2φ). If ε′/ε → 0,
the following Yukawa-like interaction potential is found:

βVst (h) = Z∗2λB

4h
e−2κh (14)

for h � a, where Z∗ = Zeκa/(1 + κa) is the renormalized charge taking care of the finite
size of the colloidal particle. This effective potential can be understood as the repulsive
interaction of a point charge Z∗ with its own screened image charge. For h → 0, this potential
diverges, resulting in an energy barrier of infinite height which prevents a point-like particle
from adsorbing onto the air–water interface. It is immediately seen that equation (14) is
consistent with (13), as the κ = 0 limit of (14) gives just the bare image-charge interaction
Z2λB/4h. The parameter regimes of validity of equation (14) have been tested extensively
against the full PB result in [21] for h > a. There is no attempt here to extend the screened
interaction as in (14) to the region h < a.
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3. Results and discussion

3.1. The electrostatic energy barrier

We have solved the PB BVP in equation (2) numerically for a charged colloidal particle near
and at an air–aqueous electrolyte interface, at finite salt-ion concentrations characterized by
the Debye screening constant κ . The solution enabled us to determine the grand potential,
equation (4), and the effective interaction, equation (5), between the charged particle and
the air–water interface. Other relevant parameters that have gone into the problem are: the
equilibrium temperature of the system characterized by the Bjerrum length λB , the colloid
or particle radius a, the particle surface ion density σ , and the particle–interface distance h.
We have then five input parameters; κ , λB , a, σ , and h that govern the interaction potential.
By scaling all lengths by a and by furthermore scaling the interaction potential as λ̃Bβ� (see
equation (4)), we can reduce these parameters to just three independent input parameters: κ̃ ,
h̃, and σ̃ , where λ̃B = λB/a, κ̃ = κa, h̃ = h/a, and σ̃ = aσλB . The scaled form of the
surface density is suggested by the first boundary condition in equation (2).

The reduced inverse screening length, κ̃ , is varied from 0 to 3. The particle comes from
the bulk solution where h̃ 	 1 to the surface, h̃ < 1. σ̃ is varied from about 0.02 to 0.15
when we encountered severe convergence problems due to the enormous effect of the non-
linearity in the PB equation. A sphere of radius 1 µm carrying Z = 1000 elementary charges
corresponds to σ̃ ≈ 0.057 at room temperature. Because the fixed charges are assumed to be
homogeneously distributed on the colloid, σ is constant and independent of h, but Z can vary
with h when the particle pops out of water; see equation (10). The choice and range of these
parameters will enable us to explore the linear and to some extent non-linear regimes of the
potential φh.

Figure 2 shows the plot of the scaled grand potential λ̃Bβ�(h̃) as a function of the reduced
particle–interface separation, h̃ for various values of the reduced screening constant κ̃ = 0,
0.5, 1.0, and 2.0 at fixed σ̃ = 0.08. The κ̃ = 0 curve is obtained from limiting potentials,
equations (9) and (12). All curves show a repulsive particle–interface interaction at h̃ > 1
and a well-resolved peak at h̃ = 1. For h̃ < 1, the particle begins to dewet. The fraction of
the colloidal surface exposed to water decreases and accordingly the double-layer energy goes
down, resulting in an obvious minimum, β�(h � −a) = 0, when the particle is completely
discharged. This minimum is not shown in the plots. We reiterate that figure 2 shows just
the double-layer interaction energy and that for h̃ < 1 the energy contributions due to the
discharging and the capillary forces have not yet been added. The figure reveals an electrostatic
barrier to adsorption of the charged colloid to the interface from the bulk electrolyte. This
barrier is lowered on increasing the salt content of the solution. Let us define the adsorption
barrier height as

λ̃BβVad = λ̃Bβ[�(h̃ = 1) − �(∞)]. (15)

There is also a double-layer barrier to pushing the particle from the interface to the bulk
solution:

λ̃BβVde = λ̃Bβ[�(h̃ = 1) − �(−∞)], (16)

(�(−∞) = 0) which for convenience we call the double-layer desorption barrier. Figure 3
shows the variation of these quantities with κ̃ , for σ̃ = 0.05, 0.08, and 0.10. Both barrier
heights decrease with increasing κ̃ , i.e. increasing salt concentration. Note that both graphs,
figures 3(a) and (b), are plotted to the same scale, showing that for a given σ̃ , the desorption
barrier is far higher than the adsorption barrier.

We now turn to the other forces that the colloid experiences at the interface. Most important
are the forces resulting from the surface tension which lead to a trap for the colloidal particles at
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Figure 2. The grand potential given in the reduced form λ̃Bβ�(h̃) as a function of the interface–
particle separation, h̃, for various values of the screening constant. The reduced colloid surface
charge density, σ̃ , is fixed at 0.08. The κ̃ = 0 curve is obtained from the limiting case, equations (9)
and (12), while the rest are obtained through numerical solution of the non-linear PB equation. All
lengths are given in units of a.

the air–water interface. It is instructive to compare the depth of this trap with that resulting from
the double-layer forces just considered. Pieranski [1] has reported that colloidal polystyrene
particles are trapped in a surface energy well with a minimum when a particle is immersed to
about two thirds of its diameter in suspension (h̃ ≈ 1/6). The surface energy is made up of
three contributions; the surface energy of the particle–air interface, the surface energy of the
particle–water interface, and the negative surface energy of the missing air–water interface.
The total energy can be expressed as [1]

βEs(h̃) = βπa2γaw(h̃2 + 2(γ̄pw − γ̄pa)h̃ + 2(γ̄pa + γ̄pw) − 1), (17)

where γ̄pa = γpa/γaw, γ̄pw = γpw/γaw; γpw, γpa , and γaw are respectively the surface
tensions of the particle–water, particle–air, and air–water interfaces. For the minimum energy,
one obtains

βEs(h̃min) = βπa2γaw(2(γ̄pw + γ̄pa) − (γ̄pw − γ̄pa)
2 − 1) (18)

with h̃min = (γ̄pa − γ̄pw) found from minimizing (17). The corresponding desorption barrier,
βEde, for the surface energy is then given by

βEde = βEs(h̃ = 1) − βEs(h̃min). (19)

Dividing the surface energy desorption barrier by a2, we obtain a quantity βEde/a
2 that is

constant for all particle sizes. On the other hand, the double-layer desorption barrier reduced
in the same manner, βVde/a

2, still depends on the sphere radius as well as the surface charge
density and the screening constant. To compare the two types of barrier for a polystyrene sphere,
we have to resort again to the unreduced parameters, namely a, λB , κ , and σ . Figures 4(a)–(c)
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Figure 3. (a) The height of the double-layer energy barrier to colloid adsorption to the air–
water interface from the electrolyte, λ̃BβVad defined in equation (15), as a function of the inverse
screening length, κ̃ , for various scaled surface charge densities, σ̃ (numbers labelling the curves).
(b) The height of the analogous barrier to desorption back to the electrolyte from air, λ̃BβVde

defined in equation (16), also as a function of κ̃ .

show the variation of the double-layer desorption barrier per a2 with the surface charge
density |eσ | for three particle radii a = 50, 100, and 200 nm and for (a) κ = 0.01 nm−1,
(b) κ = 0.005 nm−1, and κ = 0. λB is fixed at its room temperature value in water (0.715 nm).
The straight line in figure 4 is βEde/a

2 (×10−2). The values for γpa , γpw, and γaw are taken
from [1]. The figure shows that βVde/a

2 increases with increasing a, increasing |eσ |, and
decreasing κ . However, for the highest surface charge density and largest particle investigated
here, the surface energy trap still leads the electrostatic trap by more than an order of magnitude.
But for highly charged particles of micrometre dimension, the electrostatic contribution to the
overall barrier may become significant.

We next wish to compare the approximate interaction potential, βVst (h), equation (14)
based on Stillinger’s linearized PB equation, with the exact potential based on the numerical
solution of the non-linear PB equation. Such a comparison, shown in figure 5, reveals
the parameter regime in which the more handy linear theory is valid. In the figure, the
curves labelled ‘Full-PB’ and ‘Linear’ are the exact and approximate potentials respectively.
Figure 5(a) shows the particle–interface interaction, λ̃BβV (h̃), as a function the particle–
interface separation, h̃, for various reduced surface charge densities, σ̃ , at a fixed screening
constant κ̃ = 1.0; and figure 5(b) shows the adsorption barrier height, λ̃BβVad , versus σ̃ for
different values of κ̃ . Both figures show that the linear theory tends mostly to underestimate
the potential but has better agreement with the exact potentials at large separation h̃ 	 1 and
small σ̃ . Figure 5(b) further shows that increasing the salt content, i.e. increasing κ̃ , does not
seem to affect the accuracy of the linear theory with regard to the adsorption barrier height.
All three sets of curves (for κ̃ = 0.5, 1.0, 2.0) have about the same error margin.

Figure 6 is meant as a summary of the preceding considerations. Presented is a schematic
drawing of the total interaction energy of a charged colloid near and at an air–water interface,
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Figure 4. Comparing height of the double-layer barrier to desorption with that for the surface
energy, specifically for polystyrene spheres, and with unscaled parameters (a, λB , κ , eσ ). Dividing
both the double-layer barrier height, βVde , and the surface energy barrier height, βEs , by a2,
βEs/a

2 remains constant while βVde/a
2 varies with a, κ , and σ . The axes labels are the same for

the three plots.

i.e., the sum of the electrostatic contributions of equation (4) and the force derived from the
surface tension, equation (17). Gravitational forces are not included. The energy contribution
due to the (possibly only partial) discharging of the dewetted colloid surface at h̄ < 1 is also
not included. The force on a colloid, approaching the interface from bulk where h̃ 	 1, is
repulsive, but for a particle of finite size the repulsive energy barrier has a finite height. This
barrier height at h̃ = 1 is larger for higher colloidal surface charge or lower salt content of
the electrolyte. When the colloidal particle breaks through the air–water interface, i.e., when
h̃ < 1, surface tension forces become important and hold the colloid in a trap that is orders of
magnitude deeper than the height of the double-layer barrier.

It is an interesting observation that this picture of the interaction between a charged colloid
and an air–water interface resembles our classical understanding of the effective colloid–colloid
interaction in bulk (Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [36]): in both cases,
there is a repulsive and salt-dependent energy barrier at large distances that prevents particles
from being pulled into an attractive well at shorter distances that is orders of magnitudes larger
(van der Waals attraction in DLVO theory, attractive surface tension force in our case). This,
for instance, means that just in the same way as one can induce an initially stable colloidal
suspension to aggregate by adding salt (‘salting-out’ effect), one should be able to cause
colloids to pop up to the air–water interface by reducing the energy barrier through adding salt.

It is necessary to point out again that the terms, adsorption and desorption, used in this
study are only convenient terms for describing the behaviour of the particle in the vicinity of the
interface. The complete picture of ion adsorption or desorption is a complex process which
should include the explicit structure of the solvent (water) molecules. For similar reasons
also, the potentials used in the analysis are regarded as effective, in that contributions from



4892 E C Mbamala and H H von Grünberg

1 1.5 2 2.5

h
~

0

0.02

0.04

0.06

0.08

0.1

0.12

λ~ B
βV

Full-PB
Linear

0.05 0.1 0.15

σ∼
0

0.1

0.2

0.3

0.4

0.5

λ~ B
βV

ad

Full-PB
Linear

σ∼ = 
.10

.08

.05

κ∼ = 1.0 κ∼ =     

1.0

2.0

(a) (b)

0.5

Figure 5. Comparison between the particle–interface interaction energies based on numerical
solution of the non-linear PB equation (‘Full-PB’) and that based on a linear potential (‘Linear’),
equation (14). (a) The interface–particle interaction (h̃ > 1), λ̃BβV (h̃), as a function of the
interface–particle separation, h̃, for reduced surface charge densities σ̃ = 0.05, 0.08, and 0.10.
(b) The double-layer adsorption barrier height, λ̃BβVad , as a function of σ̃ for screening constants
κ̃ = 0.5, 1.0, and 2.0.

solvent interactions (particle–solvent, air–solvent) and contributions from lateral interactions
(particle–particle) are not included.

3.2. Relevance to experiments

The foregoing results can be applied to explain qualitatively some experimental observations.

(i) As mentioned earlier, Kesavamoorthy et al [2] have described the observation of a layer
of 2D hexatic polystyrene crystals in a thin suspension film confined between glass and
air. Below the air–water interface, the crystalline particles are separated by about two
times the particle diameter. But on exposing the film to an intense laser light, some
water is drained from the suspension and some particles suddenly pop out at the air–water
interface, and subsequently collapse into a compact 2D structure. The sudden emergence
of the particles at the interface can be explained in the light of our results: on draining water
from the film, the salt concentration is increased, increasing the screening constant κ , and
thereby reducing the electrostatic adsorption barrier height, λ̃BβVad . The particles can
then overcome the barrier and are subsequently trapped in both electrostatic and surface
(tension) energies, but most dominantly in the latter, as we have shown in figure 4.

(ii) The adsorption rates of some charged proteins at interfaces have been observed to increase
with increasing ionic strength of the solvent. MacRitchie and Alexander [37], quite
a long time ago, studied experimentally the rate of adsorption of the charged globular
proteins bovine serum albumin and lysozyme at the air–water interface. On varying the
electrostatic potential by addition of NaCl, the rate of adsorption was found to increase as
the potential was decreased. This is in agreement with our result in which the particle–



Effective interaction of a charged colloidal particle with an air–water interface 4893

-1 0 1 2 3 4

 h
~

0

βΩ
 +

 β
E

s

High surface charge

Low surface charge

Low salt

High salt

Figure 6. A schematic plot of the total interaction energy of a charged colloidal particle at the
air–water interface with a repulsive double-layer energy barrier at large distances and an attractive
well resulting from surface tension forces at shorter distances.

interface interaction potential is decreased with increased screening, resulting in lowering
of the adsorption barrier. Furthermore, the much-talked-about non-reversibility of proteins
on adsorption at air–water interface, which has been attributed largely to denaturing once
at the interface [15], may well also be due to the trapping of the protein at the interface.

(iii) A recent atomic force microscope (AFM) experiment [38] involving a direct measurement
of the force of interaction between an air bubble attached to the base of the AFM piezo-
stage and a single polystyrene sphere attached to the AFM cantilever, all in an aqueous
electrolyte, shows some barrier (suspected to be of electrostatic origin) to the particle
approach to the air–water (bubble–water) interface. However, direct comparison of data
from AFM experiments with theoretical results such as ours is not quite straightforward for
the following reason: the conversion of the directly measurable AFM stage position and
the cantilever deflection to the more relevant particle–interface separation is problematic
due to the deformability of the bubble interface. That is, the position of the interface
shifts as the particle approaches the interface. A good deal of information about the AFM
experiments for particle–air/water interface interaction can be found in [30, 39] and in
appendix B, where we have also given a simple procedure for obtaining the particle–
interface distance from the AFM observables.

4. Summary and conclusions

The present work is essentially a numerical study of the interaction of a singly charged colloidal
particle of radius a with an air–water interface, where special emphasis has been put on the
electrostatic aspect of this problem. On the basis of the PB equation, we calculated the effective
electrostatic double-layer interaction for all particle–interface distances h, including the case
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where the particle breaks through the air–water interface. The PB BVPs could be solved
numerically using geometry-adapted coordinate systems for the three situations h > a, h = a,
and h < a. For h > a the colloid experiences a repulsive double-layer force which becomes
attractive for h < a. The resulting double-layer energy barrier has its maximum value at h = a.
We studied its dependence on the colloidal surface charge density and the salt concentration of
the electrolyte, and compared it with the depth of the surface tension trap, located directly at
the air–water interface. For the system experimentally studied in [1], the energy contributions
due to surface tension forces are some orders of magnitude larger than those resulting from
electrostatic forces. The electrostatic aspects of the problem are therefore mainly important in
the distance regime where the colloid has not yet touched the interface, i.e., at h > a. In the
distance regime h < a, a thorough calculation of the interaction potential is still awaited; it
must take account of (a) the detailed discharging process of the dewetted part of the colloidal
surface, and (b) the capillary forces, with a realistic description of the meniscus.

An interesting analogy that we have mentioned in this work is that between the DLVO
problem of two colloids in bulk and our problem of a colloid near the air–water interface.
From an electrostatic viewpoint, this analogy is obvious from the image-charge concept: a
charged colloidal particle a distance z = h from the air–water interface behaves as if there
were another colloidal particle of the same charge at z = −h (apart from a factor 1/2 in the
interaction potential). The resulting interaction is repulsive. But the analogy to the classical
DLVO picture extends a little further: in both cases, electrostatic double-layer repulsion at
large distances contrasts with a much stronger attraction at smaller distances. It is due to
dispersion forces in the DLVO case, and caused by surface tension forces in our case. It is
important that the repulsive double-layer barrier, preventing the particle from being pulled into
the attractive well, is salt dependent, and can thus be easily manipulated experimentally. In
the same way as a colloidal suspension can be caused to become unstable, a colloidal particle
can be induced to pop up to the air–water interface—by adding salt. Experiments in which
this interesting effect has actually been observed are mentioned and discussed in the text.
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Appendix A. Solution of the PB equation and the grand potential in the various
coordinate systems

In our numerical scheme, the PB equation and the grand potential for the problem have been
written and solved in different coordinate systems. They include bispherical, toroidal and
tangent-sphere coordinates. Each coordinate system is suited to a particular interface–particle
configuration (figure 1). They enable the complex system boundaries to be transformed
into 2D rectangular forms. The bispherical coordinate system is suitable when the particle
is some finite distance away from the interface and has been described elsewhere for a
similar problem [21]. The tangent-sphere and toroidal systems for touching and penetrating
configurations, respectively, are described here in a similar manner.

The general procedure is to express the Laplacian appearing in the BVP equations in the
appropriate coordinates. The mildly non-linear elliptic BVP, in which the non-linearity arises
solely through the potential function, is reduced to a sequence of linear elliptic problems by
the Newton–Raphson iteration method [40,41]. Each iteration requires the solution of a linear
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elliptic problem, achieved using HERMCOL [41], a publicly available code. This method
uses a fourth-order discretization based on collocation with bicubic Hermite basis functions.
The resultant linear equations are solved with a band solver. And the resulting potential in
every iteration is used in the numerical integration for the grand potential, equation (3), now
expressed in the appropriate coordinates. This continues until the iteration converges to the
desired accuracy.

Under the constant-charge boundary condition, the BVP equation (2) can be written as

∇2φ = κ̃2 sinh φ r ∈ G

na · ∇φ = 4πσ̃ r ∈ ∂Ga

nw · ∇φ = 0 r ∈ ∂Gw

φ = 0 r → ∞

(A.1)

where all lengths including the Laplacian have been scaled by the particle radius a; κ̃ = κa,
σ̃ = aσλB . Henceforth any reduced length will be indicated by the tilde (∼) symbol.

Toroidal coordinates

The toroidal coordinate system (η, θ, ϕ) is related to the rectangular coordinates (x, y, z)
by [42]

x = b sinh η cos ϕ

cosh η − cos θ

y = b sinh η sin ϕ

cosh η − cos θ

z = b sin θ

cosh η − cos θ

η ∈ [0, ∞]; θ ∈ [−π, π ]; ϕ ∈ [0, 2π ].

(A.2)

The coordinate surfaces are: two intersecting spherical bowls (θ = ±constant), a toroid
(η = constant), and a half-plane (ϕ = constant). To make the system adaptable to our
problem, one spherical bowl is assumed to be the particle that has penetrated the air–water
interface and the other is its image (figure A.1(a)). Because of the cylindrical symmetry about
the line joining the two spherical bowls, the coordinates reduce to (η, θ ) and are related to the
cylindrical coordinates (ρ, z) where ρ =

√
x2 + y2; thus,

ρ = b sinh η

cosh η − cos θ

z = b sin θ

cosh η − cos θ
.

(A.3)

The equation of the coordinate surface of interest, the spherical bowl, is then

ρ2 + (z − b cot θ)2 = b2

sin2 θ
. (A.4)

The particle of radius a, centred at h, is a surface of constant θ , θc, with the following important
relations:

a = b/ sin θc

h = b cot θc

h/a = cos θc.

(A.5)
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Figure A.1. The toroidal coordinate system: the boundaries of the colloid (full line sphere) and
the electrolyte system in (a) are mapped to the (η, θ ) rectangle in (b).

We proceed to express (A.1) in the (η, θ ) coordinates, starting with boundary condition on the
four sides of the rectangle (figure A.1(b)):

∂ηφ(η∞, θ) = 0

∂θφ(η, 0) = 0

∂ηφ(0, θ) = 0

∂θφ(η, θc) =
(

b

cosh η − cos π

)
(−4πσ̃ ).

(A.6)

The Laplacian in the PB equation transforms as

∇2φ = δ3

b2 sinh η

{
∂

∂η

(
sinh η

δ

∂φ

∂η

)
+ sinh η

∂

∂θ

(
1

δ

∂φ

∂θ

)}

= δ3

b2

{
1

δ

∂2φ

∂η2
+

1

δ

∂2φ

∂θ2
+

(1 − cosh η cos θ)

δ2 sinh η

∂φ

∂η
− sin θ

δ2

∂φ

∂θ

}
(A.7)

where δ = cosh η − cos θ . The grand potential, equation (3), can finally be written as

λ̃Bβ�(h) = −πσ̃

∫
φh

b̃2 sinh η

(cosh η − cos θc)2
dη

+
κ̃2

4

∫
dη

∫
dθ [φh sinh φh − 2(cosh φh − 1)]

b̃3 sinh η

(cosh η − cos θ)3
(A.8)

with b̃ = b/a.

Tangent-sphere coordinates

The tangent-sphere coordinate system (µ, ν, ϕ) is similar to the toroidal coordinate system
with the two fused spherical bowls now two tangent spheres. The relevant coordinate surfaces
are the two tangent spheres of constant ν (±νc) which are convenient for describing our system
if the particle just touches the interface (h = a). Again, the second sphere is assumed to be
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the particle image. The configuration has cylindrical symmetry and relates to the cylinder
coordinates (ρ, z) thus:

ρ = µ

µ2 + ν2

z = ν

µ2 + ν2

µ ∈ [0, ∞], ν ∈ [−∞ : ∞]

(A.9)

The surfaces of constant µ are toroids without centre openings. The equation of the tangent
sphere can be written as

ρ2 +

(
z − 1

2ν

)2

= 1

4ν2
. (A.10)

That gives, as in (A.5), the following relations:

a = 1/2νc

h = 1/2νc

h/a = 1.

(A.11)

The BVP can be summarized in the following equations:

γ 2 ∂2φ

∂µ2
+ γ 2 ∂2φ

∂ν2
+ γ

(ν2 − µ2)

µ

∂φ

∂µ
− 2γ ν

∂φ

∂ν
= sinh φ;

∂µφ(µ∞, ν) = 0; ∂νφ(µ, 0) = 0; ∂µφ(0, ν) = 0;
∂νφ(µ, νc) =

(
1

µ2 + ν2
c

)
(−4πσ̃ )

(A.12)

where γ = µ2 + ν2. The grand potential in this coordinate system can be derived as

λ̃Bβ�(h) = −πσ̃

∫
φh

µ

(µ2 − νc)2
dµ

+
κ̃2

4

∫
dµ

∫
dν [φh sinh φh − 2(cosh φh − 1)]

µ

(µ2 − ν2)3
. (A.13)

Appendix B. The atomic force microscope (AFM)

The interaction of solid colloidal particles with fluid interfaces is often measured by the AFM.
Ducker et al [30] measured forces across water between a silica probe particle attached to
the AFM cantilever and an air bubble sitting on the piezo-driven stage. Similar experiments
have been reported by other workers [38,43–45]. Chan et al [39], basing their study on AFM
experiments, have recently probed the effect of disjoining pressure on particle–fluid interface
interaction in an analytic manner to describe the total force exerted on the probe particle as
a function of the distance of the piezo-stage. They also displayed numerical results based on
the solution of the PB equation using the Derjaguin method [36], a reasonable method in the
limit where the interface–particle separation is much smaller than the particle radius, as for
the AFM probe particle (a ∼ 1–3 µm).

The difficulty in analysing AFM results lies mainly in converting the particle–piezo-stage
distance, l, and the cantilever deflection d (see figure B.1(a)) to the particle–interface minimum
separation, D0 (in our study D0 = h − a), a major parameter in theoretical schemes. The
difficulty arises because the air–water interface (or bubble interface) is no longer planar as the
particle approaches the interface but is deformed according to the elasticity of the interface.
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Figure B.1. (a) Geometry of the AFM measurement. (b) Estimating the bubble ‘spring constant’,
kb .

Sticking to the labels used by Chan et al [39] for the AFM set-up, we outline below a rather
simple recipe for the conversion.

From figure B.1(a) we observe that D0 can be written as

D0 = d + l0 − l (B.1)

where l0 = L − 2a − z0. The direct measurable quantities are: L, which is fixed as shown;
l, the adjustable piezo-stage; a, the particle radius; and d, the cantilever deflection measured
by the light reflection technique. l0 and hence z0, the deformed height of the bubble, can
be estimated from the elastic properties of the interface. If the interface is assumed linearly
elastic, then we may write the force F exerted by the probe on the interface as

F = kb(z1 − z0) (B.2)

where z1 is the undeformed height of the bubble (also measurable [30]) and kb is the effective
‘spring constant’ of the interface. We also have that

F = kcd, (B.3)

with kc the spring constant of the AFM cantilever. Hence from (B.2) and (B.3), we find that

z0 = z1 − kc

kb

d (B.4)

or

l0 = l1 +
kc

kb

d, (B.5)

where l1 = L − 2a − z1.
What is now left is to estimate kb. Consider the flat bubble surface deformed by the

force on the particle, as shown in figure B.1(b). Because the bubble is so large compared to
the particle, the particle sees a flat environment. The elastic free energy of changing the flat
cross-sectional area, A0, to the depressed area, A1, can be written as

E(s) = γb(A1 − A0) (B.6)

where s (=z1 − z0) is the height of the surface depression (figure B.1(b)) and γb is the bubble–
water surface tension (γb = 0.072 N m−1). It is hence straightforward to show that

A1 − A0 = πs2, (B.7)

and so we have

E(s) = πγbs
2. (B.8)
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The corresponding force, F(s), is then

F(s) = 2πγbs = 2πγb(z1 − z0). (B.9)

Comparing (B.9) and (B.2), we have

kb = 2πγb, (B.10)

which remarkably turns out to be simple and solely dependent on the elasticity of the bubble–
water interface characterized by the surface tension γb. Putting this all together, equation (B.1)
now becomes

D0 = (h − a) =
(

1 +
kc

2πγb

)
d + l1 − l. (B.11)

This relation now enables us to compare the F -over-l force curves measured in an AFM
experiment (with F = kcd) with the forces considered in the present study given as a function
of h.

References

[1] Pieranski P 1980 Phys. Rev. Lett. 45 569
[2] Kesavamoorthy R, Rao C B and Raj B 1993 J. Phys.: Condens. Matter 5 8805
[3] Stamou D, Duschl C and Johannsmann D 2000 Phys. Rev. E 62 5263
[4] Kalia R K and Vashishta P 1981 J. Phys. C: Solid State Phys. 14 L643
[5] Terao T and Nakayama T 1999 Phys. Rev. E 60 7157
[6] Onoda G Y 1985 Phys. Rev. Lett. 55 226
[7] Hurd A J and Schaefer D W 1985 Phys. Rev. Lett. 54 1043
[8] Robinson D J and Earnshaw J C 1992 Phys. Rev. A 46 2045
[9] Ruiz-Garcia J and Ivlev B 1998 Mol. Phys. 95 371

[10] Watanabe T, Shiga M, Asai K and Ishigure K 1999 Mol. Cryst. Liq. Cryst. 327 135
[11] Zahn K and Maret G 2000 Phys. Rev. Lett. 85 3656

Zahn K, Lenke R and Maret G 1999 Phys. Rev. Lett. 82 2721
Zahn K, Mendez-Alcaraz J M and Maret G 1997 Phys. Rev. Lett. 79 175

[12] Sear R P 1999 J. Chem. Phys. 111 4800
[13] Lenne P-F et al 2000 Biophys. J. 79 496
[14] Sengupta T and Damodaran S 1998 Langmuir 14 6457
[15] MacRitchie F 2000 Physical Chemistry of Biological Interfaces ed A Baszkin and W Norde (New York: Dekker)

pp 137
[16] Chetan S R and Srinivasan D 2000 Langmuir 16 9468
[17] Hurd A J 1985 J. Phys. A: Math. Gen. 18 L1055
[18] Israelachvili J N 1992 Intermolecular and Surface Forces (London: Academic)
[19] Jackson J D 1975 Classical Electrodynamics (New York: Wiley)
[20] Netz R R 1999 Phys. Rev. E 60 3174
[21] von Grünberg H H and Mbamala E C 2001 J. Phys.: Condens. Matter 13 4801
[22] Stillinger F H 1961 J. Chem. Phys. 35 1584
[23] Earnshaw J C 1986 J. Phys. D: Appl. Phys. 19 1863
[24] Wagner C 1924 Z. Phys. 25 474
[25] Onsager L and Samaras N N T 1934 J. Chem. Phys. 2 528
[26] Weyl W A 1951 J. Colloid Sci. 6 389
[27] Good R J 1957 J. Phys. Chem. 61 810
[28] Frumkin A 1960 Electrochim. Acta 2 351
[29] Farrel J R and McTigue P J 1982 J. Electroanal. Chem. 139 37
[30] Ducker W A, Xu Z and Israelachvili J N 1994 Langmuir 10 3279
[31] Hoskin N E 1956 Phil. Trans. R. Soc. A 248 433
[32] Ledbetter J E, Croxton T L and McQuarrie D A 1981 Can. J. Chem. 59 1860



4900 E C Mbamala and H H von Grünberg

[33] Carnie S L, Chan D Y C and Stankovich J 1994 J. Colloid Interface Sci. 165 116
[34] Parsegian A 1969 Nature 221 844
[35] Quesada-Perez M, Moncho-Jorda A, Martinez-Lopez F and Hildalgo-Alvarez R 2001 J. Chem. Phys. 115 10 897
[36] Verwey E J W and Overbeek J Th G 1948 Theory of the Stability of Lyophobic Colloids: the Interaction of Sol

Particles having an Electric Double Layer (Amsterdam: Elsevier)
[37] MacRitchie F and Alexander A E 1963 J. Colloid Sci. 18 464
[38] Vinogradova O I, Yakubov G E and Butt H J 2001 J. Chem. Phys. 114 8124
[39] Chan D Y C, Dagastine R R and White L R 2000 J. Colloid Interface Sci. 236 141
[40] Houstis E N, Mitchell W F and Papatheodorou T S 1983 Int. J. Numer. Methods Eng. 19 665
[41] Houstis E N, Mitchell W F and Rice J R 1985 ACM Trans. Math. Softw. 11 379
[42] Moon P and Spencer D E 1971 Field Theory Handbook 2nd edn (Berlin: Springer)
[43] Fielden M L, Hayes R A and Ralston J 1996 Langmuir 12 3721
[44] Butt H J 1994 J. Colloid Interface Sci. 166 109
[45] Preuss M and Butt H J 1998 Langmuir 14 3164


